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Abstract: This study presents a collocation scheme using modified Lucas wavelets to 

approximate solutions for important Benjamina Bona Mohany equations applied in 

diverse physical applications. The proposed scheme transforms the problem into an 

algebraic system, and comparative analysis with existing methods demonstrates its 

effectiveness in providing accurate solutions for Benjamina Bona Mohany partial 

differential equations. 
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1. Introduction 

Since the 1990s, wavelet methods have been widely used to solve various partial 

differential equations (PDEs) crucial for modeling physical phenomena in fields like 

chemical physics and fluid mechanics [1]. Analyzing approximations for both linear and 

nonlinear PDEs is vital for understanding complex phenomena. Wavelets, known for 
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their effective application and accurate function representation, have gained substantial 

attention from researchers in different scientific and technological disciplines due to the 

impracticality of finding exact analytical solutions for these challenging PDEs. This work 

focuses on BBM PDEs, widely utilized in the scientific realm to simulate various 

intricate physical events. In contemporary research, numerical analysis [2] is increasingly 

applied to solve a variety of PDEs, including BBM equations, resulting in specified 

solutions. 

The BBM equation is as follows: 

𝑎1𝑤𝑡(𝑧, 𝑡) + 𝑏1𝑤𝑧(𝑧, 𝑡) + 𝑐1𝑤(𝑧, 𝑡)𝑤𝑧(𝑧, 𝑡) − 𝑑1𝑤𝑧𝑧𝑡(𝑧, 𝑡) = 𝑔1(𝑧, 𝑡)  

 

where , 𝑎1,𝑏1, 𝑐1, 𝑑1 are known constant and 𝑔1(𝑧, 𝑡) is real–valued continuous function 

on [0,1) × [0,1) . 

Efficient numerical techniques are vital for addressing application problems related to 

BBM partial differential equations (PDEs). Researchers have proposed various methods, 

including Lie group method [3], Finite difference method [4], Backlund transformation 

method [5], Adomain decomposition method [6], Integral method [7], Haar wavelet 

method [8], and Laguerre wavelet collocation method [9,13,14]. Notably, the wavelet 

method (WM) is distinguished for its power and elegance. The proposed work aims to 

develop a modified Lucas wavelet collocation scheme for solving BBM PDEs. 

The remainders of presented paper are in following manner: Section 2 discusses brief 

definitions of the modified Lucas wavelets (MLWs) and section 3 discusses function 

approximation. Explanation of proposed modified Lucas wavelets collocation scheme 

(MLWsCS) for solving BBM equation is described in section 4.  Test example is in 

Section 5. Finally, conclusion is given in last. 

 

2. Brief definition of MLWs 

MLWs delineated on four arguments: 𝑘, �̂� , 𝑚, 𝑧  is denoted by Ψ𝑛,𝑚(𝑧) = Ψ(𝑘, �̂� = 𝑛 − 1,𝑚, 𝑧) 

and can be defined as follows on [0, 1]  [10-12]:    
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Ψ𝑛,𝑚(𝑧) = { 2
(𝑘−1)

2  ∩𝑚 ℒ̌𝑚(2
𝑘−1𝑧 − 𝑛 + 1),     𝑖𝑓 

𝑛−1

2𝑘−1
≤ 𝑧 ≤

𝑛

2𝑘−1 

0,                                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,              (1) 

where,   

n = 1, 2, … , 2k−1 , m = 0, 1, … , M − 1, k ∈ Z+,  ∩m=

{
 
 

 
 

1

√π
,                                                       both m = 0

−√2i

√π
,                                                  both m = odd

√2

√π
,                                                  both m = even

0,                                                          otherwise }
 
 

 
 

,          (2) 

ℒ ̌𝑚(2
𝑘−1𝑧 − 𝑛 + 1)are modified Lucas polynomials (MLPs) of degree 𝑚,  and 𝑧 stand for normalized time which is 

orthonormal with regard to weight function ℘
𝑛
(𝑧) = ℘(2𝑘−1𝑧 − 𝑛 + 1) =

1

√16𝑧−16𝑧2
 on [0, 1]. Moreover, these 

MLPs are easily calculated by the following relation: 

 

 ℒ̌𝑚(2
𝑘−1𝑧 − 𝑛 + 1)  =

1

2𝑚
[(𝑖(4𝑧 − 2) + √16𝑧 − 16𝑧2)

𝑚
+ (𝑖(4𝑧 − 2) − √16𝑧 − 16𝑧2)

𝑚
].           (3)  

The introduced wavelets Ψ𝑛,𝑚(𝑧)given in equation (1) are orthonormal with regard to the weight function ℘𝑛(𝑧) =

℘(2𝑘−1𝑧 − 𝑛 + 1) =
1

√16𝑧−16𝑧2
 on 𝐿2[0, 1]. 

i.e.,   

  ∫ Ψ𝑛,𝑚(𝑧)Ψ𝑛′,𝑚′(𝑧)℘𝑛
(𝑧)𝑑𝑧

1

0
= {

1,                             (𝑛,𝑚) = (𝑛′, 𝑚′)

0,                            (𝑛,𝑚) ≠ (𝑛′, 𝑚′)  
.              (4) 

Substituting the values  𝑘 = 1, 𝑛 = 1, 𝑎𝑛𝑑 𝑀 = 6,  in equation (1) applying the relations given in equations 2 and 3, 

we find required MLWs. 

 

3. Function approximation 

A function 𝑓(𝑧) which is square integrable delineated on  1,0  may be expressed as linear combination of MLWs 

series as  

𝑓(𝑧) ≅ ∑ ∑ ℊ
𝑛,𝑚

∞
𝑚=0

∞
𝑛=1 Ψ𝑛,𝑚(𝑧),                  (5) 

      

where ℊ
𝑛,𝑚

= 〈𝑓(𝑧),Ψ𝑛,𝑚(𝑧) 〉
 
are MLWs coefficients and the 〈. , . 〉

 
indicate the inner product in 𝐿2[0, 1].  Next, 

truncate the series described above in equation (5) as follows: 

𝑓(𝑧) ≅ ∑ ∑ ℊ
𝑛,𝑚

𝑀−1
𝑚=0

2𝑘−1
𝑛=1 Ψ𝑛,𝑚(𝑧) = ℊ𝑇Ψ(𝑧),              (6) 

       

 Where ℊ and Ψ(𝑧) are vector of order 2𝑘−1𝑀 × 1, written as 
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ℊ = [ℊ
1,0
, … , ℊ

1,𝑀−1
, ℊ
2,0
, … , ℊ

2,𝑀−1
, … , ℊ

2𝑘−1,0
 , … , ℊ

2𝑘−1,𝑀−1
 ]
𝑇

,            (7) 

Ψ(𝑧) = [Ψ1,0(𝑧), … ,Ψ1,𝑀−1(𝑧),Ψ2,0(𝑧), … ,Ψ2,𝑀−1(𝑧), … ,Ψ2𝑘−1,0(𝑧) , … ,Ψ2𝑘−1,𝑀−1 (𝑧)]
𝑇
          (8)

 

Similarly, an arbitrary two-variable function
 
𝑤(𝑧, 𝑡) defined over [0,1) × [0,1) can be expanded in terms of MLWs 

basis as 

 𝑤(𝑧, 𝑡) ≈ Ψ𝑇(𝑡)𝑃Ψ(𝑧),                   (9) 

where, 

Ψ𝑇(𝑡) = (𝛹1,0(𝑡), … ,𝛹1,𝑀−1(𝑡), 𝛹2,0(𝑡), … ,𝛹2,𝑀−1(𝑡), … ,𝛹2𝑘−1,0(𝑡) , … , 𝛹2𝑘−1,𝑀−1 (𝑡)),         (10) 

and, 

 𝑃 = [𝑝𝑖,𝑗]𝑁×𝑁,𝑁 = 2𝑘−1𝑀.                (11)
 

  
     

4. Explanation of proposed modified Lucas wavelets collocation scheme 

In section 4, MLWsCS is used to solve the BBM, PDEs.  

Steps: First we consider the the BBM, PDEs of the type 

𝑎1𝑤𝑡(𝑧, 𝑡) + 𝑏1𝑤𝑧(𝑧, 𝑡) + 𝑐1𝑤(𝑧, 𝑡)𝑤𝑧(𝑧, 𝑡) − 𝑑1𝑤𝑧𝑧𝑡(𝑧, 𝑡) = 𝑔1(𝑧, 𝑡) ,            (12) 

With initial condition, 

𝑤(𝑧, 0) = 𝑓1(𝑧),      0 ≤ 𝑧 ≤ 1,                (13) 

and boundary conditions: 

𝑤(0, 𝑡) = ℎ0(𝑡), 𝑤(1, 𝑡) = ℎ1(𝑡),      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0,              (14) 

where, 

 𝑎1,𝑏1, 𝑐1, 𝑑1 are real constant and 𝑓1(𝑧), ℎ0(𝑡), ℎ1(𝑡), 𝑔1(𝑧, 𝑡)  are real–valued continuous function on [0,1) ×

[0,1). 

 Let, 

wzzt(z, t) ≈ Ψ
T(t)PΨ(z),                 (15) 

where,  

the value of  ΨT(t), Ψ(z), P described in the above equations (10), (8), (11) respectively. 

Where, P represent 𝑁 × 𝑁 MLWs coefficient matrix to be found. Now integrate equation (15) with regard to 𝑡 from   

0 to 𝑡. 

wzz(z, t) = wzz(z, 0) + ∫ Ψ𝑇(𝑡)𝑃𝛹(𝑧)𝑑𝑡
𝑡

0
 ,               (16) 
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now, integrate equation (16) with regard to 𝑧 from   0 to 𝑧. 

wz(z, t) = wz(0, t) + wz(z, 0) − wz(0,0) + ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(𝑧)𝑑𝑡𝑑𝑧
𝑡

0

𝑧

0
 ,            (17) 

similarly, integrate equation (17) with regard to 𝑧 from   0 to 𝑧. 

𝑤(𝑧, 𝑡) = 𝑤(0, 𝑡) + z(wz(0, t) − wz(0,0)) + 𝑤(𝑧, 0) − 𝑤(0,0) + ∫ ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(𝑧)𝑑𝑡𝑑𝑧𝑑𝑧
𝑡

0

𝑧

0

𝑧

0
 ,         (18) 

put 𝑧 = 1, in equation (18) we get, 

𝑤(1, 𝑡) = 𝑤(0, 𝑡) + (wz(0, t) − wz(0,0)) + 𝑤(1,0) − 𝑤(0,0) + ∫ ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(1)𝑑𝑡𝑑𝑧𝑑𝑧
𝑡

0

1

0

1

0
 ,         (19) 

On putting conditions from equations (13) and (14) into equation (19) we get, 

wz(0, t) − wz(0,0) =   ℎ1(𝑡) − ℎ0(𝑡) + 𝑓1(0) − 𝑓1(1) − ∫ ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(1)𝑑𝑡𝑑𝑧𝑑𝑧
𝑡

0

1

0

1

0
 ,                        (20) 

Using equations (17, 18) and (20) we get, 

wz(z, t) = wz(z, 0) + ℎ1(𝑡) − ℎ0(𝑡) + 𝑓1(0) − 𝑓1(1) − ∫ ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(1)𝑑𝑡𝑑𝑧𝑑𝑧
𝑡

0

1

0

1

0

 

+∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(𝑧)𝑑𝑡𝑑𝑧
𝑡

0

𝑧

0
 ,                                    (21) 

 

and,  

𝑤(𝑧, 𝑡) = 𝑤(0, 𝑡) + 𝑧 (ℎ1(𝑡) − ℎ0(𝑡) + 𝑓1(0) − 𝑓1(1) − ∫ ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(1)𝑑𝑡𝑑𝑧𝑑𝑧
𝑡

0

1

0

1

0

) 

+𝑤(𝑧, 0) − 𝑤(0,0) + ∫ ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(𝑧)𝑑𝑡𝑑𝑧𝑑𝑧
𝑡

0

𝑧

0

𝑧

0
 ,                                  (22) 

Differentiate equation (22) with regard to 𝑡, we get, 

wt(z, t) = wt(0, t) + 𝑧 (ℎ1
′(𝑡) − ℎ0

′(𝑡) − ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(1)𝑑𝑧𝑑𝑧
1

0

1

0
) + ∫ ∫ Ψ𝑇(𝑡)𝑃𝛹(𝑧)𝑑𝑧𝑑𝑧

𝑧

0

𝑧

0
 ,         (23) 

Substituting the resulting values from equations (15), and (21-23) into equation (12) and applying following 

collocation points 

 𝑧𝑖 , 𝑡𝑗 =
2𝑖−1

2𝑀
,   𝑖, 𝑗 = 1,2, … ,𝑀.                (24) 

Now we solve the obtained system by using Mathematica 7.0. , and we get MLWs coefficients 𝑝𝑖,𝑗 ,   𝑖, 𝑗 =

1,2, … , 2𝑘−1    and then putting these coefficient in equation (22) we get the approximate solution of consider BBM 

PDEs. The absolute error calculated by |𝐸𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛| . 

4. Test example 

Example 1.  Consider the BBM, PDE of the form [9] 

𝑤𝑡(𝑧, 𝑡) + 𝑤𝑧(𝑧, 𝑡) − 2𝑤𝑧𝑧𝑡(𝑧, 𝑡) = 0 ,                      (25) 

With initial conditions, 
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𝑤(𝑧, 0) = 𝑒−𝑧,      0 ≤ 𝑧 ≤ 1,                (26) 

and, boundary conditions 

𝑤(0, 𝑡) = 𝑒−𝑡 , 𝑤(1, 𝑡) = 𝑒−1−𝑡 ,      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0,              (27) 

This test example has exact solution: 𝑒−𝑧−𝑡 . 

By using conditions given in equations (28) and (29), we solve the equation (27) by using MLWSCM discussed in 

this article we get the following system of algebraic equations: 

(−𝑒−𝑡𝑗 − 𝑒−𝑧𝑖 + 𝑒−1−𝑡𝑗 − 𝑒−𝑡𝑗 + 1 − 𝑒−1) + 𝑧𝑖(−𝑒
−1−𝑡𝑗 + 𝑒−𝑡𝑗) − 𝑧𝑖∫ ∫ Ψ𝑇(𝑡𝑗)𝑃𝛹(1)𝑑𝑧𝑑𝑧

1

0

1

0

 

+∫ ∫ Ψ𝑇(𝑡𝑗)𝑃𝛹(𝑧𝑖)𝑑𝑧𝑑𝑧 − 2Ψ
𝑇(𝑡𝑗)𝑃𝛹(𝑧𝑖) − ∫ ∫ ∫ Ψ𝑇(𝑡𝑗)𝑃𝛹(1)𝑑𝑡𝑑𝑧𝑑𝑧

𝑡𝑗

0

1

0

1

0

𝑧𝑖

0

𝑧𝑖

0

 

+∫ ∫ Ψ𝑇(𝑡𝑗)𝑃𝛹(𝑧𝑖)𝑑𝑡𝑑𝑧 = 0
𝑡𝑗
0

𝑧𝑖
0

.                 (28) 

We solve the above system described in equation (8), for 𝑘 = 1,𝑀 = 6 by using Mathematica software 7.0, we get 

the unknown matrix 𝑃6×6. Substitute this matrix in equation (22) we get MLWsCS based approximate solution and 

compared with some existed methods results with their absolute error is presented in table-1. Exact and approximate 

solutions graph is represented in figure 1 and 2 respectively. 

 

Table 1.  

 

z FDM[8] HWM[8] MLWsCS Exact Absolute 

error in 

FDM[8] 

Absolute 

errors in 

HWM[8] 

Absolute 

errors in 

MLWsCS 

1/16 0.82942254 0.82957675 0.82897223 0.82902911 3.93E-04 5.47E-04 5.684E-05 

3/16 0.73277957 0.73244494 0.73144137 0.73161562 1.16E-03 8.29E-04 1.742E-04 

5/16 0.64756878 0.64621771 0.64534316 0.64564852 1.92E-03 5.69E-04 3.053E-04 

7/16 0.57245382 0.56995069 0.56938845 0.56978282 2.67E-03 1.67E-04 4.639E-04 

9/16 0.50625604 0.50267060 0.50216799 0.50283157 3.42E-03 1.60E-04 6.635E-04 

11/16 0.44793598 0.44342497 0.44283339 0.44374731 4.18E-03 3.22E-04 9.139E-04 

13/16 0.39657711 0.39130681 0.39038839 0.39160562 4.97E-03 2.98E-04 1.217E-03 

15/16 0.35137142 0.34546659 0.34402782 0.34559075 5.78E-03 1.44E-04 1.562E-03 

 



75 
 

 

 

Figure 1: Graph of exact solution for test example 1 

 

 

Figure 2: Graph of MLWsCS solution for test example 1 

 

Conclusions 

MLWsCS is described in this article for calculating the BBM, PDE for physical conditions, 

which is an achievement in new research. The scheme is evaluated for PDEs of the type BBM. If 

we increase no. of MLWs bases then we get further improvement in approximation solution. The 

proposed scheme is computationally effective and provides more improvements in numerical 

results of PDEs which is approved by the approximate solution for the given test example. The 
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solution received from the MLWsCS becomes more reliable if we use more MLWs basis. In 

experimental test example, we use Mathematica 7.0 to perform the calculations, and the CPU 

running time approximately 7 to10 seconds, where used processor is Intel Core i3, 5th 

generation. 
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